

# **GATE / PSUs**

# ELECTRONICS ENGINEERING-ECE

### STUDY MATERIAL DIGITAL ELECTRONICS



1



## **ELECTRONICS ENGINEERING** GATE & PSUs

### STUDY MATERIAL

## **DIGITAL ELECTRONICS**

#### **DIGITAL ELECTRONICS**

#### CONTENT

| 1. | BINARY SYSTEM                 | 3-17    |
|----|-------------------------------|---------|
| 2. | BOOLEAN ALGEBRA & LOGIC GATES | 18-38   |
| 3. | MINIMIZATION TECHNIQUES       | 39-48   |
| 4. | COMBINATIONAL CIRCUITS        | 49-78   |
| 5. | SEQUENTIAL DIGITAL CIRCUITS   | 79-104  |
| 6. | SEMICONDUCTOR MEMORIES        | 105-110 |
| 7. | A/D AND D/A CONVERTERS        | 111-116 |
| 8. | DIGITAL LOGIC FAMILIES        | 117-139 |
|    |                               |         |
|    |                               |         |

#### CHAPTER-1 BINARY SYSTEM

#### **Base Conversion**

A number  $a_n$ ,  $a_{n-1}$  ...  $a_2$ ,  $a_1$ ,  $a_0$ ,  $a_{-1}$ ,  $a_{-2}$ ,  $a_{-3}$  ... expressed in a base r system has coefficient multiplied by powers of r.

$$\boxed{a_{n}r^{n} + a_{n-1}r^{n-1} + a_{n-2}r^{n-2} + ... + a_{1}r + a_{0} + a_{-1}r^{-1} + a_{-2}r^{-2} + a_{-3}r^{-3} + ...} \quad ...(A)$$

#### **Key Points:**

To convert a number of base r to decimal is done by expanding the number in a power series as in (A) Then add all the terms.

**Example :** Convert following Binary number (11010.11)<sub>2</sub> in to decimal number.

#### **Solution:** Base r = 2

 $1 \times 2^{4} + 1 \times 2^{3} + 0 \times 2^{2} + 1 \times 2^{1} + 0 \times 2^{0} + 1 \times 2^{-1} + 1 \times 2^{-2}$ 

 $(11010.11)_2 = (26.75)_{10}$ 

**Example :** Convert  $(127.4)_8$  in to decimal equivalent.

**Solution:**  $1 \times 8^2 + 2 \times 8^1 + 7 \times 8^0 + 4 \times 8^{-1} = (87.5)_{10}$ 

#### Numbers with Different bases:

| Decimal $(r = 10)$ | Binary $(r = 2)$ | Octal $(r = 8)$ | Hexadecimal (r = 16) |
|--------------------|------------------|-----------------|----------------------|
| 00                 | 0000             | 00              | 0                    |
| 01                 | 0001             | 01              | 1                    |
| 02                 | 0010             | 02              | 2                    |
| 03                 | 0011             | 03              | 3                    |
| 04                 | 0100             | 04              | 4                    |
| 05                 | 0101             | 05              | 5                    |
| 06                 | 0110             | 06              | 6                    |
| 07                 | 0111             | 07              | 7                    |
| 08                 | 1000             | 10              | 8                    |
| 09                 | 1001             | 11              | 9                    |
| 10                 | 1010             | 12              | А                    |
| 11                 | 1011             | 13              | В                    |
| 12                 | 1100             | 14              | С                    |
| 13                 | 1101             | 15              | D                    |
| 14                 | 1110             | 16              | Е                    |
| 15                 | 1111             | 17              | F                    |

4

**Example:** Convert following hexadecimal number into decimal number: (B65F)<sub>16</sub> **Solution:** 

 $11 \times 16^3 + 6 \times 16^2 + 5 \times 16^1 + 15 \times 16^0 = (46687)_{10}$ 

Conversion of decimal number to a number in base r:

- Separate the number into an integer part and fraction part.
- Divide the number and all successive quotients by r and accumulating the remainders.
- Conversion of decimal fraction is done by multiplying the fraction and all successive fractions by r and

integers are accumulated.

Example: Convert decimal number 41 to binary.

#### Solution:

| Integer que |                                                |             | ient                     | Remainder   | Coefficient |  |  |  |
|-------------|------------------------------------------------|-------------|--------------------------|-------------|-------------|--|--|--|
| 41/2        | =                                              | 20          | +                        | 1           | $a_0 = 1$   |  |  |  |
| 20/2        | =                                              | 10          | +                        | 0           | $a_1 = 0$   |  |  |  |
| 10/2        | =                                              | 5           | +                        | 0           | $a_2 = 0$   |  |  |  |
| 5/2         | =                                              | 2           | +                        | 1           | $a_3 = 1$   |  |  |  |
| 2/2         | =                                              | 1           | +                        | 0           | $a_4 = 0$   |  |  |  |
| 1/2         | =                                              | 0           | +                        | 1           | $a_5 = 1$   |  |  |  |
|             |                                                |             |                          |             |             |  |  |  |
|             |                                                | $(41)_{10}$ | $\rightarrow (101001)_2$ |             |             |  |  |  |
|             |                                                |             | · · · ·                  |             |             |  |  |  |
| Exam        | Example: Convert (153) <sub>10</sub> to octal. |             |                          |             |             |  |  |  |
| Solut       | ion:                                           |             |                          |             |             |  |  |  |
|             | Intege                                         | r quotient  | Remainder                | Coefficient |             |  |  |  |
|             | 153/8                                          | =           | 19 + 1                   | $a_0 = 1$   |             |  |  |  |
|             | 19/8                                           | =           | 2 + 3                    | $a_0 = 3$   |             |  |  |  |
|             | 2/8                                            | =           | 0+2                      | $a_0 = 2$   |             |  |  |  |
|             |                                                |             |                          |             |             |  |  |  |

Thus  $(153)_{10} \rightarrow (231)_8$ 

**Example:** Convert (0.6875)<sub>10</sub> to Binary.

**Solution:** 0.6875 is multiplied by 2 to give an integer and a fraction. The new fraction is multiplied by 2 to give a new integer and new fraction.

This process is continuing until the fraction becomes zero or until the numbers of digits have sufficient accuracy.

| ELECTRONICS-ECE |                                | D                   | IGITAL ELEC       | TRONICS          | 5        |              |  |
|-----------------|--------------------------------|---------------------|-------------------|------------------|----------|--------------|--|
|                 |                                |                     | Integer           |                  | Fraction | Coefficient  |  |
| 0.6875          | × 2                            | =                   | 1                 | +                | 0.3750   | $a_{-1} = 1$ |  |
| 0.3750          | × 2                            | =                   | 0                 | +                | 0.7500   | $a_{-2} = 0$ |  |
| 0.7500          | × 2                            | =                   | 1                 | +                | 0.5000   | a_3 = 1      |  |
| 0.500 ×         | 2                              | =                   | 1                 | +                | 0.0000   | $a_{-4} = 1$ |  |
|                 | (0.687                         | (5) <sub>2</sub> →  | (0.1011)2         |                  |          |              |  |
| Examp           | le: Co                         | nvert (             | $(0.513)_{10}$ to | octal.           |          |              |  |
| Solutio         | n:                             |                     |                   |                  |          |              |  |
| 0.513 ×         | 8                              | =                   | 4                 | +                | 0.104    | $a_{-1} = 4$ |  |
| 0.104 ×         | 8                              | =                   | 0                 | +                | 0.832    | $a_{-2} = 0$ |  |
| 0.832 ×         | 8                              | =                   | 6                 | +                | 0.656    | $a_{-3} = 6$ |  |
| 0.656 ×         | 8                              | =                   | 5                 | +                | 0.248    | a_4 = 5      |  |
| 0.248 ×         | 8                              | =                   | 1                 | +                | 0.984    | a_5 = 1      |  |
| 0.984 ×         | 8                              | =                   | 7                 | +                | 0.872    | $a_{-6} = 7$ |  |
| Answer          | r to six                       | signif              | icant figures     | s is:            |          |              |  |
|                 | (0.406                         | 517                 | ) 8               |                  |          |              |  |
| Thus            | (0.513                         | )10→ (              | (0.406517)8       |                  |          |              |  |
|                 | (41.68                         | 75) <sub>10</sub> – | →(101001.10       | 11) <sub>2</sub> |          |              |  |
|                 | (153.5                         | 13)10-              | → (231.4065       | 17) <sub>8</sub> |          |              |  |
| Octal a         | Octal and hexadecimal numbers: |                     |                   |                  |          |              |  |
| C               | · .                            | 1.                  |                   | 1 • •            | 1 1 1    |              |  |

Conversion from binary to octal is easily done by partitioning the binary number into groups of 3 digits each starting from binary point & proceeding to left and to the right.

The corresponding octal digit is then assigned to each group.

For conversion into hexadecimal, binary number is divided into group of 4 digits.

#### Example :

 $(2 6 1 5 3.7 4 6 0)_8$  to binary number 010 110 001 101 011 - 111 100 110 000

Thus binary number is

 $(10\ 110\ 001\ 101\ 011.11110011)_2$ 

Example: Convert binary to hexadecimal number:

 $(10\ 1100\ 0110\ 1011.1111\ 0010)_2$ 

0010 1100 0110 1011. 1111 0010

2 C 6 B F  $2 = (2C6B.F2)_{16}$ 

Example :(673.124)8 to binary number:

 $(673.124)_8 \equiv (110\ 111\ 011\ \cdot\ 001\ 010\ 100)_2$ 

6 7 3 1 2 4

 $(306.D)_{16}$  to binary number:

 $(306.D)_{16} \equiv (0011\ 0000\ 0110.\ 1101)_2$ 

3 0 6 D

#### Complements

Complements are used in digital computer for simplifying the subtraction operations and for logic manipulation. There are 2 types of complements for each base r system

i. Diminished radix complement ((r-1)'s complement

ii. Radix complements (r's complement)

- i. Diminished radix complement:
  - Given a number N in base r having n digits, the (r-1)'s complement of N is defined as  $(r^n 1) N$ .
  - For decimal number r = 10, (r 1)'s complement or 9's complement of N is  $(10^n 1) N$ .

#### **9's complement:** (10<sup>n</sup> – 1) – N :

- 10<sup>n</sup> can be represented as single 1 followed by n 0's
- $10^n 1$  is number represented by n 9's.
- Thus 9's complement can be obtained by subtracting each digit of number N by n 9's.

Example : Find 9's complement of 546700

#### Solution:

999999 - 546700 = 453299

9's complement of 546700 is 453299

#### 1's Complement for binary number:

- It is given as  $(2^n 1) N$
- 2<sup>n</sup> can be representing as binary number consist of single 1 followed by n 0's.
- $2^n 1$  can be represented as n 1's.

#### **ELECTRONICS-ECE**

**Example :**1's complement of 1011000.

**Solution:** 1111111 - 1011000 = 0100111

**Note:** It is similar to changing 1's to 0's and 0's to 1 or complement each digit of number is similar to taking 1's complement of the number.

Note: (r - 1)'s complement of octal and hexadecimal number is obtained by subtracting each digit from 7 and F respectively.

#### (ii) Radix Complement:

r's complement of n digit number N in base r is defined as  $r^n - N$  for  $N \neq 0$  & 0 for N = 0

It is equivalent to adding 1 to (r-1)'s complement.

If (r-1)'s complement is given, r's complement can be obtained by adding 1 to (r-1)'s complement.

**Example :**Find 10's complement of number if its 9's complement is 453299.

Solution: r's complement is 453299 + 1

r's complement = 453300

Example :2's complement of 1010110 is:

**Solution:** 1's complement: complement each digit of number  $(1010110) \rightarrow (0101001)_2$ 

Thus 2's complement is 0101001 + 1

2's complement = (0101010)2

#### Another Method to Obtain 10's, 2's Complement:

Leaving all least significant 0's unchanged, subtracting the first non-zero least significant digit from 10 and subtracting all higher significant digits from 9.

Example: Find 10's complement of 012398.

#### Solution:

- Subtract 8 from 10 in the least significant position
- Subtracting all other digits from 9.

9999910

<u>- 01239 8</u>

98760 2

Thus 10's complement of 012398 is 987602.

Example: 10's complement of 246700.

Solution: Leaving 2 least significant 0's unchanged, subtracting 7 from 10 and other 3 digits from 9.

9991000 -246700 753300

Thus 10's complement of 246700 is 753300

**Similarly 2's complement** can be formed by leaving all least significant 0's and first 1 unchanged and replacing 1's with 0's and 0's with 1's in all other higher significant digits.

**Example:** 2's complement of (1101100)<sub>2</sub>:

#### Solution:



Thus 2's complement of 1101100 is (0010100)<sub>2</sub>

#### Subtraction with complement:

i. Convert subtrahend N to r's complement.

**ii.** Then add to the minuend M.

- iii. If  $M \ge N$ , sum will produce end carry, which can be discarded, what is left is the result, M N.
- iv. If M < N, sum does not produce carry and is equal to  $r^n (N M)$ , which is same as r's complement of (N M).
- v. To take the answer in familiar form, take the r's complement of the sum and place a negative sign in front.

Example: Using 10's complement, subtract 72532 – 3250

Solution: M = 72532 N = 0325010's complement of N = 96750Sum: 72532 +96750169282

Discard end carry as M > N so result: 69282

Example: Using 10's complement, subtract 3250 - 72532

| Solution:        | M = 3250                                         |
|------------------|--------------------------------------------------|
| N = 725          | 532                                              |
| 10's compleme    | ent of 72532 is                                  |
|                  | 9999 10                                          |
|                  | <u>- 7253 2</u>                                  |
| 10's compleme    | ent 27468                                        |
| Sum: 3250        |                                                  |
| 27468            |                                                  |
| Sum 30718        |                                                  |
| Since $N > M$ so | o no end carry.                                  |
| Therefore answ   | ver is $-(10$ 's complement of $30718) = -69282$ |

#### Example: Subtract 1010100 - 1000011

Solution: 2's complement of N (1000011)=0111101

Sum: 1010100 + 0111101 10010001

So result is 0010001

Note: Subtraction can also be done using (r - 1)'s complement.

#### **Signed Binary numbers**

When binary number is signed, left most bit represents the sign and rest of bits represent the number.

- If binary number is unsigned, then left most bits is the most significant bit of the number.
- Positive or Negative can be represented by (0 or 1) bit which indicate the sign.

**Example:** String of bits 01001 can be considered as 9 (unsigned binary) or +9 (signed binary) because left most bits are 0.

**Example:** String of bits 11001 represent 25 when considered as unsigned number or -9 when considered as signed number.

#### Negative number representation:

(i) **Signed magnitude representation:** In this representation number consist of a magnitude and a symbol (+ or -) or bit (0 or 1) indicating the sign, left most bit represents sign of a number.

 $11001 \rightarrow -9$ 

 $01001 \rightarrow +9$ 

#### (ii) Signed complement system:

• In this system, negative number is indicated by its complement.

#### **ELECTRONICS-ECE**

• It can use either 1's or 2's complement, but 2's complement is most common.

#### Note:

- 2's complement of positive number remain number itself.
- In both signed magnitude & signed complement representation, the left most significant bit of negative numbers is always 1.

**Example :** +9 00001001

-9 11110111 (2's complement of +9)

**Note:** Signed complement of number can be obtained by taking 2's complement of positive number including the sign bit.

- Signed magnitude system is used in ordinary arithmetic, cannot employed in computer arithmetic because of separate handling of the sign and the magnitude.
- In computer arithmetic signed complement system is used to represent negative numbers.

| Decimal | Signed 2'Complement | Signed 1's complement | Signed magnitude   |
|---------|---------------------|-----------------------|--------------------|
| +4      | 0100                | 0100                  | 0100               |
| +3      | 0011                | 0011                  | 0011               |
| +2      | 0010                | 0010                  | 0010               |
| +1      | 0001                | 0001                  | 0001               |
| +0      | 0000                | 0000                  | 0000               |
| -0      | -                   | 1111                  | 1000               |
| -1      | 1111                | 1110                  | 1001               |
| -2      | 1110                | 1101                  | 1 <mark>010</mark> |
| -3      | 1101                | 1100                  | 1011               |
| -4      | 1100                | 1011                  | 1100               |

#### Note:

2's complement representation range for n bit number is:

 $-2^{n-1}$  To  $2^{n-1}-1$  (for n = 8 range is  $+127 \rightarrow -128$ 

1's complement:  $-(2^{n-1}-1)$  to  $(2^{n-1}-1)$ 

Signed magnitude range:  $-(2^{n-1}-1)$  to  $(2^{n-1}-1)$ 

#### **Binary Codes**

Any discrete element of information distinct among a group of quantities can be represented with a binary code.

n bit binary code is a group of n bits that have 2<sup>n</sup> distinct combinations of 1's and 0's with each combination representing one element of the set that is being coded.

**Example:** With 2 bits  $2^2 = 4$  elements can be coded as: 00, 01, 10, 11

With 3 bits  $2^3 = 8$  elements can be coded as:

000, 001, 010, 011, 100, 101, 110, 111

- Minimum number of bits required to code 2<sup>n</sup> distinct quantities in n.
- The bit combination of an n bit code is determined from the count in binary from 0 to  $2^n 1$ .
- **Example :** 3 bit combination
  - 000 0
  - 001 1
  - 010 2
  - 011 3
  - 100 4
  - 101 5
  - 110 6
  - 111 7

**BCD** (Binary coded decimal)

- A number with k decimal digits require 4 K bits in BCD.
- A decimal number in BCD is same as its equivalent binary number only when number is between 0 to 9.
- BCD number needs more bits that its equivalent binary.
- Example:  $(185)_{10} = (000110000101)_{BCD} = (1011001)_2$
- In BCD number, each bit is represented by its equivalent binary representation.

Note: BCD numbers are decimal numbers and not binary numbers, although they use bits in their representation.

- Decimal are written as 0,1,2,3,...,9 which BCD can be written as : 0000, 0001, 0010, 0011, ..., 1001 Benefits of BCD:
- BCD helps to do arithmetic operation directly on decimal numbers without converting them into equivalent binary numbers.

#### **DIGITAL ELECTRONICS**

| Decimal system | BCD digits | Binary equivalent |
|----------------|------------|-------------------|
| 0              | 0000       | 0000              |
| 1              | 0001       | 0001              |
| 2              | 0010       | 0010              |
| 3              | 0011       | 0011              |
| 4              | 0100       | 0100              |
| 5              | 0101       | 0101              |
| 6              | 0110       | 0110              |
| 7              | 0111       | 0111              |
| 8              | 1000       | 1000              |
| 9              | 1001       | 1001              |
| 10             | 00010000   | 1010              |
| 11             | 00010001   | 1011              |

#### **BCD** addition:

- If binary sum is equal to or less than 1001 (without a carry), the corresponding BCD digit is correct.
- If binary sum  $\geq$  1010, the result is an invalid BCD.
- Addition of 6 = (0110)<sub>2</sub> to the binary sum converts it to the correct digits and also produces a carry as required.

| Example: | 4         | 0100  | 4         | 0100         | 8         | 1000  |
|----------|-----------|-------|-----------|--------------|-----------|-------|
|          | <u>+5</u> | +0101 | <u>+8</u> | +1000        | <u>+9</u> | +1001 |
|          | 9         | 1001  | 12        | 1100         | 17        | 10001 |
|          |           |       |           | <u>+0110</u> |           | 0110  |
|          |           |       |           | 10010        |           | 10111 |

### **Example:** Add 184 + 576 in BCD. **Solution:**

|            | 0001        | 1000        | 0100        | 184         |
|------------|-------------|-------------|-------------|-------------|
|            | <u>0101</u> | <u>0111</u> | <u>0110</u> | <u>+576</u> |
| Binary sum | 0110        | 1111        | 1010        |             |
| Add 6      |             | 0110        | 0110        |             |
| BCD sum    | 0111        | 0110        | 0000        |             |
|            | 7           | 6           | 0           | 760         |

- Representation of Signed decimal numbers in BCD is similar to the representation of signed number in binary.
- Sign of decimal number is represented with 4 bits :

Positive number: '0000' (0)

Negative number – '1001' (9)

### **Published Books**



Helpline: 9990657855 , 9990357855

www.engineersinstitute.com